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ABSTRACT

This report is the first of a two-year effort for deter-
mining the dynamic and static aerodynamic stability derivatives
for volute stabilized cylindrical forebodies. The complete
analytical treatment of both rigid and flexible models is dealt
with and these results compared to data obtained from the Eglin
low speed wind tunnel. The theory presents several methods that
give the designer necessary techniques for estimating Cma and
(Cmq + Cma) for a variety of different volute shapes and cylin-
drical forebodies. These techniques yield reasonable answers
for both rigid and flexible models operating at Rn = 2 x 105
and M. = 0.2 with volute tails sufficiently long so that the
potential flow theory used is valid. The complete data obtained
at both the Eglin facility and at Arnold Engineering Development
Center, Arnold Air Force Station, Tennessee, joined with the
analysis presented, served to show that the volute provides an
effective yet compact stabilizer for Rn = 2 x l01 to 1 x 101
for M. = 0.2 to 0.5 for cylindrical forebodies.

Distribution limited to U. S. Government agencies only; this
report documents tests and evaluation of potential military
hardware; distribution limitation applied May 1971. Other
requests for this document must be referred to the Air Force
Armament Laboratory (DLRA), Eglin Air Force Base, Florida
32542,__
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SECTION I

INTRODUCTION

This report documents the results of investigations of
the mechanical behavior of volute stabilized cylindrical fore-
bodies. The cylinder model flight characteristics were deter-
mined through experimental and analytical programs which yielded
values for the stability derivatives and several predictive
schemes for evaluating Cma,(Cmq + Cm&).

The volute stabilizer is essentially a tapered helical
spring which can be packaged conveniently in a small area at
the base of a forebody (Figure 1). Spring steel, which provides
strength and flexibility, is an ideal material for volute stabi-
lizer construction.

10

d dv

Figure 1. Volute Stabilizer



The basic dimensionless ratios are: lv/dv, dv/dc, V/1b *
Tie volute is considered to be fully characterized once iv,
dv, dr, kv (spring constant) wv, and Iv have been specified.

For a given volute planform area and forebody, the volute
stabilizer is considered effective if Cma and(Cm + Cm&)are
negative. The determination of these derivative2 as functions
of forebody-volute dimensions represents the core of the fol-
lowing sections. Once they are determined, the frequency equa-
tion can be solved for the characteristic roots of the model.
The determination of Cm and(Cmq + Cm&)is complicated by the
fact that volutes are flexible and are forced to operate in the
slipstream of the forebody.

Because of the success of linear aerodynamics in predict-
ing stability and motion for small coordinate perturbations of
many shapes, the first approach to the problem was to force the
nonlinear rigid body equation of motion Equation (5) into a
linear form. The basic moment summation required:

Constrained cg, pitch only, I = qodSCm  (1)

.d
Where, Cm = Ctrim + Cma e + (Cmq + Cmd)'V- (2)

Cm was derived in terms of dimensions of the forebody-volute
combination and the normal force coefficient Cn . Nonlinear
effects were later entered into the basic form by allowing for
forebody interference and sin 2e variation of the normal force.
The results of the rigid body analysis are divided into three
parts corresponding to three approaches used to solve for Cm.
The first is a linear theory, the second includes forebody
interference, the third involves interference and sin 2e varia-
tion of Cm.

Because the volute tail is flexible, serious questions
arise as to whether a volute equipped cylinder will be dynami-
cally stable. Insuring dynamic stability is a much more pro-
found problem than the simpler problem of guaranteeing static
stability, criteria for which are set up in the rigid body
analysis. Dynaiic stability may be inferred from the following
set of equations which describe an elastic model having only
two degrees of angular freedom:

cg moment, a O+a1 6+a 13 +a S+a 6 = 0 (3)
1ig momenta1a4 1 0

Hinge moment, a216+a226+a2 O+a 6+a256+a2 6 = 0 (4)

2



The entire flexible section deals with these equations. It is
shown in the analysis that, depending upon the mass and inertia
of the elastic tail, characteristic equations (frequency equa-
tions) may be second or fourth order polynominals. Stability
is investigated by invoking the Routh-Hurwitz criteria.

Basic supporting data was obtained from both static and
- •dynamic test stands. Dynamic tests utilize two special stands

developed under the contract: The first utilized a piezoelec-
tric-equipped model to drive an oscillograph which gave accel-
eration versus time data and the second forced the test model
into resonance (forced oscillation testing). Free-flight data
was also gathered and reduced.

3



SECTION II

RIGID BODY ANALYSIS

The rigid model equation of motion is obtained from a
simple moment summation about the forebody-volute mass center.
As shown in Appendix I, the relative velocity is the vector
sum of the free stream velocity and a rotary velocity field
which coexists with any rotational motion. The entire stabi-
lizing aerodynamic moment is equated to the normal pressure
force multiplied by an effective moment arm. The resulting
equation is nonlinear:

-16 pCntoht (V.6 + xt6)IV.6 + xtelSt (5)

-pCnbohb (VO - xb6)I vm - 4b 1Sb

It is shown that Equation (5) reduces to a linear form if a
Pumber of assumptions are made. When this is done:

= 2CnboXthtSt L CnboXbhbSb d(6

_dc __ It- 
__ 2Vc-I + eZV (6)

+ ~CntohtSt ] - CnboXbSb]

L iL CntoxtSt )
Linear aerodynamics require:

16 = qdcS[Cmq + Cm4 d + Cm ] (7)

where, Cmtrim = 0

By identification of the common terms in Equations (6) and (7):

4



m [cnthtst ]C[1(8

Cm&) -c 
2Ctoth Cnbt 1 (8

II 1 + 0 bhbSb(Cmq + CMiF~st( dcS L Cntoxthtt(9
The stability derivatives are in terms of 6, Cnvo, Cnb o ,
Cnto = f(Cnvo, Cnbo) and the geometrical properties of the
cylinder and volute. 0 is a proportionality constant which
is evaluated from 0 to 40 degrees. It is defined to be:

[4 0 0 (10)

= 1.432 1sinOde = 0.335

Cnvo and Cnbo are the normal force coefficients of the volute

and cylinder evaluated at 900. Cnv decreases with an increase
of the ratio lv/dv (Appendix II). The final results have
justified approximating Cnvo and Cnbo with average values for
volutes having lv/dv ranging from 0.78 to 4.79 and cylinders
with lc/dc ranging from 1.48 to 2.36. Cnvo and Cnbo will be
replaced by:

Cnvo = 1.100 (11)

Cnbo = 0.833 (12)

The remaining variables are:

Sb - Planform area of the cylinder forward of the cg.

Sb'- Planform area of the cylinder aft of the cg.

Sv- Planform area of the volute.

St - Equal to Sb'+ Sv .

S - Equal to the total model planform area.

r 5



Cnbo - Equal to 0.833.

Cnto - The effective normal force coefficient of the tail
area aft of the cg. Sv

Cnto = 0.267 + 0.833.

hb - Moment arm used to account for the adverse moment
set up by that portion of the cylinder forward of
the cg. hb = %Xcg

ht - Moment arm used to account for the stabilizing
moment set up by that portion of the cylinder aft
of the cg plus the entire volute. ht is:

ht 0.11
l1 Cnto ( O S4t 6

1.1- 1[1 + 1.33 ( v1 t(13)
St lSv/S

xb - Linear dimension used to proportion the magnitude
of the rotary velocity field. It accounts for
the field forward of the cylinder cg giving an
approximate value to (x)8 . xb = Xcg.

xt Serves the same purpose as Xb. xt is complicated
because it deals with two different planforms,
i.e., rectangular and triangular. For all analyti-
cal work to follow it is defined to be x = ilv +
!lv•
3

The evaluation of ht and xt is actually more involved than
is indicated by their simple definitions. The assigned values
followed a detailed Azalysis intR the behavior of each with
variations of lv/lo, 8, and 8. xt was found by evaluating the
following integral equated to an average expression:

(V.6 + X6)2S = (V.6 + xt6) (14)

S
The integration gives a complex equation revealing the depen-
dence of xt on 8 and 4 . The primary interest, however, is in
the range over which 4t can vary. This was found by setting
first 8 = 0 and thc 0 = 0 in the results of Equation (14).
When this was done xt was found to obey:

___________ (15)xt : 10 + 1 vl o + -fi v 0

210 + 1

6



2 4 1Tl 3 + Tl1o1 2 + iv1o 2 + ylv 3
2 :i V, :0

Xt 210 + 1 v (16)

These equations represent the upper and lower bounds over
which xt may vary. The value for xt, defined earlier and used
in deriving other expressions, differs from Equation (15) or
Equation (16) (i.e., .2-lo + 1Iv). xt, as defined, represents a

compromise between the two extremes at e = 0 and e = 0. How-
ever, it may be necessary for some design problems to have a
better value for xt, and for this purpose Equation (15) and
Equation (16) are graphed (Figures 2 and 3). For a given io,
xtmay be found as the volute changes length (lv varies) for
8 = 0 and 6 = 0. The same argument shows that ht likewise
varies with 8 and 8. The integral to be evaluated does not
follow directly because of the way in which ht was originally
derived. ht was found after a moment summation about the model
cg which took into account only the normal force acting aft of
the cg. The equation is:

CntohtSt = Cnbohb Sb + Cnvoht Sv (17)

Eyidently ht is a function of two other moment arms hb and h.
hb offers no problem since to good accuracy it can be approxi-
mated by -lo.

hb = o (18)

Hgwever, ht does vary with 0 and 8. ht varies with ht and

ht is found by integrating over the volute. The result is:

hI=1( .L12 + 1 111 + 11+ il) 60(19)
h=--x t  ? ° v + - l0v + I

hj = 10 + 31vO 0 (20)

h I is graphed (Figure 4) for values of 1o and Iv . Equation (17)
with the corrected ht should be used in lieu of Equation (13),
if the extra accuracy is deemed necessary. Some guidelines on
this point will be provided in the discussion on stability.

7



3.0

~~--2

00

3 .0 --- - -o 5.0
1- (Inches

Figure~~~~ 2. I\ ess~

I A, "I8



4.0

3.0

S2.0 o

00

00

II



ALAI

4-4t~t 4 J

sato4) U)

10-



Although it is not used in the linear expressions presented

thus far, Xvt serves a similar purpose in future work as x.t . It
deals with the rotary velocity field over the volute only
(whereas xtdealt with the whole tail portion aft of the cg).
Values for xvt are (Figure 5),

X vt 1o2 + i1i V + iV2/2 8 = 0 (21)

3

A 2 0= 0(2
Xvt = 1 + Tlv,= 0 (22)

Detailed work concerning derivation of all the above forms for
xt, ht, and xvt are included in Appendix I.

The first thing that is apparent from Equation (8) is a
convenient stability criteria. For static stability it is re-
quired that Cma < 0 or that:

1- Cnb hbSb 0
0 h(23)

Cntoht t

which is, htSt > .833 hbSb
Cnto

The largest that 0.833/Cnto can be is 1.00 so that Equation (22)
may also be written as:

htSt > hbSb (24)

It is required by Equation (24) that the tail planform area
and ht multiplied must be greater than the analogous parameters
hbSb measured forward of the cg. For many combinations of
cylinders and volutes it is possible to have St = Sb in which
case stability depends upon:

ht > hb (25)

The importance of ht is evident. Normally the cylinder-volute
combination will be designed to insure that St >Sb, otherwise
stability may be compromised by variations of ht with 0 or
Large St relieves the necessity of having precise values for ht.
For determining the angular frequency and damping exponent
( e - t ), use the best obtainable value for ht. Equation (17)
will serve this purpose.

11
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Because of the method in which Equation (5) was derived,
it is impossible for the rigid model to be dynamically
unstable. This is evident from Equation (9) which can never
be greater than zero. The equation is nearly the same as
Equation (8) but includes xt and xb. Accurate determination
of these variables will be manifest in a, the damping constant.
Dynamic or static stability of the rigid model does not depend
on xt. As will be shown, this is not the case for the flexible
model.

Before discussing the numerical results of the preceding
analysis, two additional methods for computing Cma and sub-
sequently Cms will be presented. Although the linear analysis
gives good answers, it fails to indicate the interference
effects from the forebody and nonlinear variation of the normal
force coefficient. Returning to Equation (5), it is evident
that there exists a 62 term which approximates sin 2e. Writing
the exact expression for the static pitching moment:

Gina
Cms = -- Isinelsine,-90 <e< 90 (26)e

The pitching moment coefficient in linear form follows directly
from Equation (26) and is again:

CMS (27)

The pitching moment slope coefficient is:

--m5 = CM i.e.,[Equation (8)] (28)

To account for forebody blanking of the volute, the area Sv
must be altered to reflect a reduction in the tail surface
which can act to stabilize the forebody. The detailed deriva-
tion is in Appendix I. The results are:

SV' Lv -dr 1 1 (29)I 2 2d 81 tanO + d2J

d dv -d vi

13



Figure 6 and Equation (29) represent the variation of Sv =S
with e, if the area planform is a triangle (d$ = 0). Most

volutes end at the forebody blunted and, therefore, the planform
is trapezoidal. This can be accounted for by adding to
Equation (29):

Sv" dv' (1v - x') (30)

where x' ,L dv' (31)= -- tanO 4- dv  -dv'

21v

the total area acting in the wind stream for a given angle of
attack is:

Sv = Sv/+ S (32)

Sv will be good enough to approximate the area if d' is not
large or not more than about 1/10 dv . Sv is plotted for dif-
ferent values of Iv/U. To use the new area in the Cm expres-
sion, an alternate form of Equation (8) has to be usea and is:

Cnvh "Sv + CnbohbSb' CnbohbSb (33)

C 1S CnvohSv CnvohtCv

This expression for Crn is not new since EquationL (8) was derived
directly from it. The new variables are:

xb  - Serves the same purpose as did xb but is equal to
-Fo.

h - Moment arm for the normal force which actq on that
portion of the cylinder aft of the cg. hb = Tlo

!Sb - Planform area of the cylinder aft of the model cg.

The new stability criteria is:

(CnvohtSv + Cnbohi'S) > Cnbohb-b (34)

at 0 0 the criteria reduces to:

CnbohbSb'> CnbohbSb (35)
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If Equation (35) is not satisfied, the inference is that the
model will tend towards static instability. This is partially
correct. As soon as the model tends to overturn, Equation (34)
becomes valid. Since Sv rises rapidly with e,increase in a
immediately tends to restore stable motion. The length of the
volute is the critical parameter since short volutes do not
have the sharp rise in SI exhibited by long volutes (Figure 6).
With the new values for Sv, Cms becomes a function of 0. With
this new form for Cms, two nonlinear theories are evident.
Equation (26) i the most nonlinear form investigated. Replac-
ing sin 2e with esine yields a third form which is a compromise
between the linear theory and the sin 20 theory. The three
theories are listed below for reference and hereafter referred
to as Methods 1, 2, and 3.

Cms Gina ee Method 1 (36)

ms= (Cm )ebsine Method 2 (37)

Cms sin 26 Method 3 (38)

b

Equation (37) represents the pitching moment coefficient for
large angles (40*) and is an extension of the linear form with
tail blanking. Equation (38) is included because it accounts
for the sin 20 variation of the normal force coefficient Cn which
has been substantiated for cylindrical shapes for large angles.
The pitching moment slope coefficient follows directly by dif-
ferentiating Equations (36),(37) and (38) giving:

GCms/ O = Cma (39)

aCis 3 = TO(Cma)bsine + (Cma)bcO (40)

20 + 2( )sin~cos0 (41)3Cms / e3 Em sin 4- b_ sie

A

Equations (37), (38), and (41) contain the expression (Cma/8)b,
which is the nonlinear variation of Cma with 0 discussed earl-
ier.
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Cms was determined experimentally for five models. Refer-
ring to the experimental section of the report (Appendix II),
the Models were 3+1, 3+2, 3+3, 3+5, and 3+6. The cylinder had
Ic/d c = 2.36 and the volute lv/dv ranged from 0.78 to 4.79.
Cms for each model along with the theoretical values obtained
from Equations (36),(37) and (38) were plotted for each model
(Figures 7 through 11). 3+1 shows the widest variation from
the predicted values of the three methods. This is so because
the greatest portion of volute 1 (lv/dv = 0.79) is forced to
act in the turbulent slipstream curling around the cylinder edge.
For this reason, short volutes should be avoided. Cm~ varies
from a positive to negative number throughout the first portion
of the plot straightening out at around 30 to 40 degrees. The
erratic behavior is undesirable and should be expected if lv/dv
is less than about 1.5 for dv = dc. The tendency toward a more
stable and predictable Cms with increasing lv/dv is evident from
the plots. The linear theory is surprisingly accurate and can
be used to predict Cms. Method 2 is more accurate and tends to
follow the contour of the data points for the larger volutes
(Figure 11). Method 3 tends to follow the data points for e
larger than 30 degrees up to the maximum range plotted. For
initial design it is recommended that the linear theory be used.
If the volute lv/dv is less than one, only wind tunnel testing
should be trusted.

Equations (40) and (41) are plotted (Figures 12 and 13).
The Cms data was not smoothed and numerical differentiation was
unproductive because the somewhat erratic behavior of most data
points was greatly exaggerated. However, the Cms plots for the
five models show that the general slope of the data points comes
very close to the slopes of Methods 1 and 2. The closest agree-
ment corresponds to the middle volute (3). The tabulated values
for Cmjradian are as follows:

TABLE I. Cma/Rad

Model Method 1 *Method 2 *Method 3 Data

3+1 -0.126 -0.087 -0.065 -0.053
3+2 -0.196 -0.155 -0.114 -0.181
3+3 -0.275 -0.225 -3.172 -0.212
3+5 -0.470 -0.399 -0.301 -0.447
3+6 -0.927 -0.816 -0.626 -0.762
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Since the linear form is accurate enough for at least
preliminary design work, it is possible to generate design
curves for Cma that are simple to use. The design curves pro-
vided depend upon Sv/St, Cnto, ht, hbSbCnbo (designated B).
Recalling the definition of Cnto, it is possible to plot Cnto
as a function of Sv/St. This is the first design curve. Once
the forebody cylinder has been selected and volute stabilizerchosen, Cnto can be found. (ht/lo) is tabulated as a function

of Sv/St and Cnto in Table II. Since Sv/St and Cnto are now
known, (ht/lo) is fixed and found by interpolating between the
two variables Sv/St and Cnto. 1o is known since the cg loca-
tion was fixed for the selected forebody-volute combination.
The tail parameters, CntohtSt are all known and the forebody

parameters, B = CnbohbSb, are fixed once the cg location is
specified. Equation (8) can now be solved for Cm~, remembering
that 6 = 0.335. Equation (8) can be used directly or the
master design curve for Cma may be used.

(1) Example: Find Cma for Model 3+6, using Equation (8)

Selection of volute 6 and specifying the cylinder
pitch axis fixes the following variables:

Sb = 2.357in 2 ; hb = 0.81 in; Cnb ° = 0.833;
1o = 1.820 in; St = 9.027 in2 ; Sv = 6.370 in
For Sv/Stz 0.7056, Figure 14 gives Cnto = 1.020
The ht/lo matrix shows:

Cnto 1.008 1.033

0.700 3.264 3.185

0.800 5.619 5.483

Interpolating between the values gives ht/lo = 3.226
Thus, ht = (1.820)(3.226) = 5.871 in
The parameter B = hbCnboSb = (0.81) (0.833)(2.357) =
1.590 in3. The quantity dS in Equation (8) is
(1.47)(11.392) = 16.746 in

3

Inserting the numbers into Equation (8):

Cma = -0 .335 ((1.02)(5.871)(9.027) - 1.59) =-l.049/rad
16.746

25
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Comparing this answer with Method 1 in Table I shows a differ-
ence of about 8 percent. This follows from the earlier comments
regarding approximating the volute planform area as a triangle,
which was done in the above calculation. Table II requires the
planform to be triangular since this approximation was used to
get ht/lo in the nondimensional form. Method 1 answers in
Table I were obtained from Equation (33), using the more
correct trapezoidal planform area. Note for volute 6, dv/d' =
4.56.

(2) Example: Find Cma for Model 3+3, using the design
chart (Figure 15).

The following variables are fixed once again:

Sb = 2.357 in2 ; hb 0.810 in; Cnb o = 0.833;
lo = 1.820 in; St = 4.946 in Sv = 2.289 in
Sv/S t = 0.463
For Sv/St = 0.460, Figure 14 gives Cnto = 0.955
Find ht using Table II: ht = 2.523 in.
The quantity B is the same as example 1, B = 1.590 in3

The quantity dS is: 1.46(7.679) = 11.21 in3

Find the vertical axis labeled St and enter there
with the value for St = 4.946. Project a line
and find the line labeled ht = 2.520. Project a line
perpendicular to the first through the point defined
by the first projection and the line ht = 2.520. In
a similar manner, locate the line labeled 0.958 and
project a third line perpendicular to the second,
and through the point defined by Cnto = 0.958 and
the second projection. Proceed around the graph,
choosing next the proper line for B = 1.59 and,
finally, the value for dS = 11.21. Read the answeK
on the left side of the vertical axis labeled Cm/ 0

A

Cm / = 0.900

CmG 0.302/rad

Comparison with the answer in Table I indicates that the pre-
ceding method is high. This is due to the volute planform area
used in developing the graph being triangular. One advantage
to using Figure 15 instead of Equation (8) or Equation (33) is
that it enables the designer to pick different values for the
many variables and see directly what the effect upon Cm, will
be. For accurate determination of Cma , use Equation (3).

(3) Example: Use Equation (33) to find Cma for model
illustrated below and investigate its stability.

28



iff HIIIHMIM 111, 111,
l::T: Tl l

r4u I
n:1 ni. M. v.

HIM Oli-Rit.H.: j: :.*. :-'T
00 mom ......
C! C! C!coo C; <; T'V., -

Ills N
tn: :Ill

I
i too tit 601

. .. .... .... ... ...

=it
MINIS !:I:

-T Ill "m!

89

Ml er

I:lt

7 Mr-1

Mt ifilmm n_ m

Vit

pit

"I i J: A

1 42Eil. 
(A

0 .0 10 10 S_

LO

3 IMN cu

M491P11 TIRE

MW ORP MR I ... .... ..
in. I... .... .... ..

RIMIM WIN

.... .... .... .... ... ..
.... .... .... ..

TIT: T., AWK. N

-M\N
PHT 

. .... .. EA: MN
%T

0 oo 0 C' 0 S ... .... ..
7

.... .. .....

,I T

29



~Volute 2

2.000 1.7

Sb= 2.920 in2 ; S = 2.0981 in2 ; Sv = 1.568 in 2 ;
hb= 1.000 in; hL 0.719 in; hj 2.652 in
which gives:

Cm t = .(3.3811) (0.315__)= - O.ll8/rad
9.62

The low value indicates possible static stability
p-oblems. Invoking the stability criteria of
Equation (23):

htSt > 0.883/Cnt kbS

6.64 > 2.560

According to Equation (23) the forebody-volute combi-
nation is stable; however, the volute is masked by
the forebody for the early portion of the oscillatory
motion. If the volute lv/dv is less than 1.5, the
nonlinear stability criteria stated by Equation (34)
should be used. In the above case, lv/dv = 1.313.
Equation (35) for the above model gives:

CnbohS > CnbohbSb, @ e = 0

and CnbohbS = 1.S08 < 2.920 = CnbohbSb

This is equivalent to stating that the model will have
a trim angle different from zero. The model will tend
to pitch over until the volute balances the adverse
moment set up by the large area in front of the cg.
That the model will stabilize out at all was verified
by satisfying Equation (23). The trim angle can be
found by using the follpwing procedure:
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CnvhSv = CnbohbSb CnbohS, i.e., Cm  = 0

therefore, Sv " S' = 0.4046

! 1
1.268 - 0.1839 (tanG + 0.3808)2

tane = 0.0806

e= 4036

To find the trim coefficient note,

Cm Cmtrim + Cma =0

Cmtrim -Cma = 0.118(0.0785) : 0.0093/rad

The model was placed in the wind tunnel operating at a dynamic
pressure of about 60 lbs/ft2 . It immediately diverged and
oscillated weakly about the 10 degree radial with an amplitude
ranging over approximately 8 to 15 degrees. A trim angle will
always be present if Equation (35) is not satisfied. If this
is the case, the magnitude of the angle will depend upon the
length of the volute, small angles corresponding to long vol-
utes, and large angles corresponding to short volutes. Since
it may be necessary that the forebody being stabilized not
exceeds a certain trim angle after transients have damped out,
it is'important to check any design for steady state trim
angle. In this respect, the above model was analyzed for
different trim angles by varying the volute length. The results
are shown in Figure' 16.

Another point which demands consideration deals with the
ratio dv/dc assumed to be close to one. Actual fabrication of
the forebody does not allow this since the volute must fit in-
side the cylinder rim (Figure 1) and thus dv < dc. This is
undesirable for stability since the volute must now be rotated
a small angle before being impinged upon by the free stream.
This is distinct from the previous cases which assume that the
volute starts producing a stabilizing moment for the slightest
pitch of the forebody. The diameter of the cylinder and volute
must be kept as close as possible, consistent with structural
requirements. Test work on a special rigid model shows that
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limit cycle vibrations persist for dv < 0.8dc. For larger
variations, wind tunnel testing should be conducted to deter-
mine if the limit cycles are severe onough to warrant rede-
sign of the volute. If the diamete:. cannot be broug.t close
enough, a longer volute can be used. This has the effect of
forcing the volute into the windstream early, reducing the
amplitude of the limit cycle.

The damping derivative can be obtained from Equation (9)
or Equation (42)

Cnvoh Svxvt + lCnboSbhbxb n ,Sb1 ^, (42)
_(Cmq + Cm6) d 2S L___ +___ _

d2 CnvSvhtxvtCnvo Svht-J

Using Equation (9) is less accurate because of the triangular
area assumption but is quicker to use than Equation (42).
Equation (9) yields the following results:

TABLE III. (Cmq + Cm&)/Rad(THEORETICAL)

1+1 -0.298 2+1 -0.348 3+1 -0.506

1+2 -0.590 2+2 -0.654 3+2 -0.844

1+3 -1.124 2+3 -1.210 3+3 -1.434

1+4 -1.666 2+4 -1.688 3+4 -1.950

1+5 -2.476 2+5 -2.528 3+5 -2.862

1+6 -8.048 2+6 -8.234 3+6 -8.714

These are plotted in Figure 17.

As indicated by Table III, the da.aping coefficient increases
dramatically with increase in tail length. Some experimental
data was obtained for Models 3+1, 3+2, 3+3, 3+5 and 3+6.
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TABLE IV (Cmq + Cm6)iRad.

Model lv/dv (Cmq + Cma ) (Cmq + Cm6 ) data

3+1 0.785 -0.506 -2.370

3+2 0.313 -0.844 -2.518

3+3 1.871 -1.434 -3.410

3+5 2.637 -2.863 -4.876

3+6 4.795 -8.714 -10.215

The theory consistently predicts low values for(Cma +_Cma). As
the volute becomes longer, agreement is better. S ort volutes
are the greatest problem because forebody turbulence is a prom-
inent factor in determining the flow pattern about the majority
of the volute length. Longer volutes operate at greater dis-
tances and consequently are able to act in a more uniform flow
field of the type the theory is based upon. A second reason
for the large difference in predicted versus actual data deals
with xt. In the calculation of CmV ht had to be averaged and
represented the only parameter tha had to be approximated
with average values.(Cm + Cm&) depends upon 't and xt so that
averaging errors in botf are amplified when they are multiplied.
(Cmq + Cma) will have about twice the error as that in Crn.
(Cmrq + Cm&) were obtained only for Models 3+1, 3+2, 3+3, 3+5,
and 3+6. These data points are plotted along with the theoret-
ical values for cylinder 3 models in Figure 18.
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SECTION III

FLEXIBLE BODY ANALYSIS

The various important geometrical parameters which affect
dynamic and static stability discussed in Section II provided
answers sufficient for preliminary design work and, in some
cases (long volutes), good enough for final design.

Flexible volutes are not as efficient in stabilizing
forebodies since they tend to bend out of the windstream. In
addition, some configurations may be dynamically unstable de-
pending upon the cg and the center of pressure location.
Static stability is easily examined with slight modification
to the rigid body analysis. Dynamic stability requires examin-
ing the characteristic equation of the model. If the model is
idealized and allowed to have only two degrees of angular free-
dom, a fourth degree equation results which can be investigated
with che Routh Hurwitz criteria. One simple approximation can
be made to the two equations of motion which effectively un-
couple the system and allow a single equation to be solved.
This case will be dealt with presently.

Most volutes will be light in relation to the forebody.
This fact can be put to use in simplifying the complex equations
of motion. If it is also assumed that damping provided by
volute motion relative to the forebody is small compared to the
normal force set up by the freestream velocity, the following
relation must hold:

qCn=0 O.
6 6lvSv- = -Je (43)

kv + qCnvo0.
6 61vSv¢

The method using Equation (43) will be referred to as the "J"
method. With Equation (43), 6 can be replaced and the equation
of motion reduced to one variable, e, and the associated deriva-
tives. The solution is not quite straightforward, however,
because of the proportionality constant @. D is found by in-
serting Equation(43) into the ( equation. ThiL gives:

for, (0 + 6) average

I 0( 1 - J (44)
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J, however, is a function of i so that the above can be written:

VV +kv Okv= 0 (45)

where V qCnvo0. 6 6lvSv

Note that V can be a function of 0 depending on whether tail
interference is taken into consideration. If it is not,
Equation (45) can be solved directly for a given V and k
With this value, J is known and the problem is nearly soYved.
Since there are no inertia effects, the aerodynamic coefficients
are changed by a constant value, the new form for each being
approximately:

I!

Cm a/rigid - CmS/rigid J (46)

+ CM+C (47)

mq + Cm (mq + Cm /rigid - Cm,/rigid J

The two forms above indicate that for flexible volutes, the
overall static and dynamic stability decrease with increases in
Cm6 and Cmi. This assumes that the lateral spring constant re-
mains constant. Note that for a given spring constant, in-
creases in the volute size cause An increase in J along with Cma,
Cm ,Cmi changing the overall stability quickly. The conditions
fo~dynamic and static stability are:

AB + 11'Svcnv (1 - J) > 0 (48)

AB + htxvtSvCnvo(l - J) > 0 (49)

The stabilizing effectiveness of many cylinders is small so that
in some cases stability can be inferred by requiring that J < 1.
If the cylinder has positive AB and AB: then the combination
will never be dynamically or statically unstable, since J < 1
for kv > 0.

Thus far, the flexible analysis has not considered fore-
body blanking. The first flexible forms are analogous to the
first forms derived under the linear rigid body analysis. As
was shown, forebody interference is important and gives rise
to a trim angle. Returning to Equation (45),V is a function
of e because Sv is. Sv was derived earlier and plotted as a
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function of 6. To use the results of this work for flexible
models, it is necessary to enter the Sv curves with the angle
(6 - 6). The effective area is a function of the angle of
attack measured relative to the volute axis which moves rela-
tive to the forebody for'flexible volutes. To find the result-
ing pitching moment and its slope, it is first necessary to
find J as before. For a given 0, the deflection angle 6 of
the volute is unknown since this is the problem. However, it
is not possible to specify Sv without knowing 6. The calcula-
tion must be an iterative process. Choose 0 and assume 6 to
be zero. Solve Equation (45) for 0 to give the second approx-
imation for Sv and the procedure repeats until 6 approaches itslimit value and a second angle chosen, An alternate method is

to assume what the angle of attack (0 - 6) is, solve the equa-
tions directly and compute what cylinder pitch angle will cause
the specified deflection. Several examples will illustrate the
linear and nonlinear flexible calculations.

(4) Example: Find the pitching moment slope coefficient
and damping coefficient for Model (3 + 6)', using the
linear method. Model (3 + 6) was characterized in
Example 1. The rigid Cma is from Table I:

Cma = -0.926/rad

A small leaf spring was inserted between the cylinder
and volute, thus converting the rigid Model (3 + 6)
to a flexible Model (3 + 6)'. The lateral spring
constant was found to be kv = 0.27 lbs/rad. With
this new value, V can be found:

V = 1.124 ft-lbs

This form of V assumes no interference effects. With V, 4 can
be found, using Equation (45).

P = 0.188

J can now be found

J = 0.439

Cm6 and Cm6 are defined to be (Appendix I):
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- Cm6  CnvoSvht] (5)-Cm6 =  dcS (0

[CnvoSvht%v (51)

CmC

Which compute:

Cm6 = -0.510/rad.

Cm = -1.614/rad.

The aerodynamic coefficients follow from Equations (46)and (47):

Cmaf= -0.296/rad.

C mq + Cm f = -4.183/rad.

(5) Example: Suppose that the volute changes in length
in Example 4, what is the effect on Cm '? Table V
lists the problem variables for 1 = 01i.118, 1.825,
2.62, 3.89, 7 and

TABLE V. Cmaf/Rad

Iv V (J Cma Cm6  Cmaf

0 0 e 0 -0.0558 0 -0.0558

1.118 0.0281 0.324 0.0326 -0.126 -0.103 -0.119

1.825 0.0721 0.309 0.0763 -0.196 -0.167 -0.168

2.62 0.1512 j 0288 0.1403 -0.275 -0.230 -0.2024
3.89 0.343 0.253 0.245 -0.470 -0.344 -0.2707

7.00 1.124 0.188 0.439 -0.926 -0.510 -0.2958
40 -0 00
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As indicated by Table V, there is a limit to the effectiveness
of a flexible volute beyond which little is gained with fur-
ther increase because of the tendency to bend out of the wind-
stream. This is distinct from the rigid case where increase
in volute length is manifest in greater Cm. without limit.
Larger flexible volutes provide greater righting moments than
smaller volutes; however, their efficiency decreases as indi-
cated by a falling off of Cmaf beyond a certain best length Iv.
If nothing else mattered, Equation (46) would be maximized and
that value of iv used. As Iv = 5.5 inches, Cmt reaches about
-0.290 and an increase of iv by 1.5 to 7 inches increases Cm(f
by 1.8 percent. In the limit, Iv - -, J goes to 1, D to 0 and
Cma f to approximately 0. To find the best design length, the

following example furnishes complete calculations.

(6) Example: Show the effect of increasing iv for a
cylinder with lc/dc = 2 where xcg = 1.46 inches and
dc = 1.46 inches. Table VI shows the problem values.
A plot of Table VI gives Cmaf a maximum value of Cmaf=
-0.3007 at Iv = 7.5 inches. Beyond this, a larger
volute would reduce in effectiveness. The curve
approaches its maximum value rapidly and this value
is nearly attained with smaller volutes. If the
best design value is defined to be 90 percent (x)lvmax
(maximum), a more reasonable length volute can be
used. In this case, the best design value is -0.2764,
which occurs at about Iv = 4.S inches and represents
a 77 percent reduction over the maximum value volute
length (Figure 19).

All of the foregoing deal with the linear form of the
flexible equations; no account was made for forebody inter-
ference. Thus, the area S-v used for all calculations was the
entire volute planform area. To account for interference and
find the value of Otrim, it is necessary to invoke the results
of Equation (29). As suggested earlier, the procedure is itera-
tive.

(7) Example: Find Cm. for Flexible Model 1, using
iteration. The calculation will he carried out for
0 = 00, 50, 100, 150, 200, 25° , 300, 350 and 40'.
Assume 6 = 0 and e So.
For the ratio lv/dc = 2.915, Equation (29) gives
Sv/d 2/ = 0.868 and Sv = 1.1487 in. 2 With this
number, the problem can be solved as in Example 4.
This gives J = 0.1012. Thus, 6 was not zero but is:

6 = -J = -(0.1012)5' = 0.506'

41



c1 ) n - P- -n -t t- -i- t m w m r

Itl"t Cl'1 U) tn \0 LA O) 0c 00 tn - 0) 0000 O

0000000o0rI n n 'D000 00A0C)0)

c) q o ccnL oo ncD -4caa t, o N I
Lr % r c () n -- (1 m oL -iLr)t-cc

9c) -: - - -O o qr n o N- :t t () " ,N
C) ) ) --4 0lr- " q 0 t 0 t m N 0

C;( .C;C C;C; e'; C C C N

tn ) n -4w " " r4 0 lA0"
Lnv or n"( m o wo )" L

t- )rIC )0 \ tv -N rc)C m 00t

Vo tnOnOOO" q .. .. o OOOO Hr-

0 C) 00lr- " tn- n 0 r--m0 A- ~
C)4 )C)C-.C)C 4C c Dr- - -

o- oo00, )oo t 0n000) ocn n

-: )L o C DV -4 d n r4r D M t

00C t 0 000 0 0000 00I t -
In \I 00 I o C) \ I'd V) t It \0 m tn I

r- tn \o o "-t t- Lt, cc r m %o~% m ~ LAor-

r0000 00 c 00i00000

r--4 = r0 O ooIA -4

Jo 0) \0 C114 0n mLnccr- 00I'd*r- L tt
v) a- -U wN---4 c nCm0LA0%o 4 n r- r- t00

C;LrLC4 L LA LA

cq C4 1 " tO ~ c~l . .. . . . . .

\0 \L\Ao\ 0 o \0\0\ 0\ \ 0 % \

(3) ~ e I NN N N 0 )M ) ) 7 )C(M ) )a ))M nN

NN " " C14 " "N " NN 140

.N N .J C J N N N . . . . . .
r- r- - 4 O - 4 - - -4 r4 rOr- - -

cq oC14
\0 ~ N N N N N D 0NN0 0 0% 0 0 0% 0%

C. 0, LAL O A 0 AO LA LO LAO jLA LA

0 c) Nr Ln c) tO a ) c L A c LA .a O L r - L cc cc

42



i,

4~4

ol b

II-



The net angle of attack is:

Ovolute = Ocyl.- 6 = 50 -0.5060 4.4940
Enter Equation (29) with this new angle and find
Sv = 1.081 in. 2  Repeat the procedure. The following
table of values results:

TABLE VII. Cmaf/Rad.

Sv  (DJ 6 Cm6  Cma Cmf

00 0 0.335 0 0 0 0 0

so 1.0889 0.3026 0.0968 -0.4413 -0.1642 -0.1799 -0.1466

100 1.484 0.291R 0.1238 -1.102 -0.2172 -0.2492 -0.1917
150 1.677 0.2894 0.1361 -1.797 -0.2418 -0.2856 -0.2'39
200 1.786 0.2871 0.1430 -2.502 -0.2555 -0.3055 -0.2236
250 1.855 0.2857 0.1475 -3.204 -0.2640 -0.3195 -0.2336
300 1.903 0.2848 0.1498 -3.890 -0.2700 -0.3266 -0.2372
350 1.936 0.2844 0.1517 -4.592 -0.2743 -0.3363 -0.2439

L 400 1.959 0.2837 0.1531 -5.308 -0.3048 -0.3397 -0.2410

The results of the flexible test work for flexible Models 1
and 2 are plotted and the predicted values are plotted (Figures
20 and 21). As was done in the rigid analysis, Cm was
chosen to represent the pitching moment data and te three
analytical curves represent the same three theories outlined in
the rigid work. The first is the most linear flexible theory
(i.e., Equation (46) - no forebody blanking) and the second
and third take into account Dsin (6 + 6) and sin 2 (6 + 6)
variations of pitching moment plus forebody blanking.

As previously stated, the flexible volute operating be-
hind the cylindrical forebody will have a trim angle different
from zero if the cg of the model is located aft of the cg of
the cylinder. Returning to Example 4, if the volute is imag-
ined to have elasticity with kv = 0.27, the following example
can be solved for the trim angle:

(8) Example: For this a trapezoidal area will be used.
The rigid body analysis provided two equations
which can be used for this purpose. The total area
into the windstream at a given angle of attack is
the sum of the following two expressions:
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Sv'= alv/ 2 - /81 v -(tane

Sv'= dv(lv - x')

Thus Sv= Sv + S '

The condition for finding the trim angle is found by setting
Equation (48) to zero.

AB + htSvCnvo(l - J) = 0

Recalling the values of the constant terms from Example 4, the
above can be written as:

1.568 0.186 - 0.0818 =0.4046
tane +0.291 (tane +0.2907)2 1 -

An iterative procedure may be used. The following table gives
intermediate answers and the final value for the trim angle.

TABLE VIII. TRIM ANGLE

Left Right
etrim Sv V 4 J Side Side

0 0 0 0 0 -0.039 0.4046
30' 0.057 0.005 0.333 0.006 0.037 0.4070

10 0.109 0.009 0.332 0.009 0.108 0.4083

20 0.197 0.017 0.328 0.020 0.226 0.4129
40 0.336 0.029 0.324 0.034 0.419 0.419

It remains to look into the damping derivatives, using
the J method. These calculations are quite simple and can be
carried out quickly, using Equations (47) and(51). This was
done for the models listed in Example 5 and are tabulated
below:
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TABLE IX. (Cmq + Cm&)f/Rad. (THEORETICAL)

Model I V  (Cmq + Cm&) 4/u Cm (Cmq + Cm&)f

3+1 1.118 -0.506 0.967 -0.169 -0.484
3+4 1.805 -0.844 0.922 -0.315 -0.754

3+3 2.62 -1.434 0.859 -0.519 -1.159
3+5 3.89 -2.862 0.755 -0.891 -1.904
3+6 7.00 -8.714 0.561 -1.871 -4.067

The J method represented a good first approximation for
determining the effects o:C volute flexing upon the basic
stability derivatives. The gi~atest shortcoming deals in the
area of dynamic stability; such instability cannot be predicted
since the volute is assumed massless. Wind tunnel testing
shows, however, that even for light volutes of the type which
would probably be used, dynamic instability is a serious problem.

A coning motion which persists after the initial tran-
sients have damped out is apparently caused by turbulence and
coupling between the pitching, yawing and stretching motions of
the volute. The three motions seem to enhance each other, per-
iodically damping out only to be revived to the same or greater
amplitude motion. For speeds lower than Mach 0.19, the motion
was less violent. The following theory deals only with two di-
niensional motion and allows for only two-degree angular freedom
motion in one plane.

Equations (1) and (2) represent the baqkbone of this theory.
To fully grasp the meaning of each leading coefficient, the two
equations will be broken down to the individual parts and dis-
cussed separately. The basic equations for reference are again:

Sa+a 1a 13 a 1 - a - a 6 (52)

a + a 6-a a 0 - a 6 - a 6 (53)
21 22 23 2'4 25 26

a - The inertia of the forebody and volute are accounted for
with al,, This term is the same as that which would
appear with 9 For a rigid model.

a vRvr € + MvRv 2  I (54)
11I
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a12 Allowing the volute to oscillate and giving it mass and,hence, inertia, gives rise to an inertia force which is

transmitted to the forebody through the elastic coupl-
ing. This inertia force must be included on the inertia
side of the moment summation equation. For = 0. The
a inertia term drops out of the equatiop and the left
side of Equation (52) reduces to the rigid form.

a 1= Iv + Mv Rv Fv = Kv  (55)

a13 - This term represents the damping moment set up by a rigid
body model having the same tail and forebody as the flexi-
ble or.-. The term is relatively large and represent3 a
major contribution to the overall damping of the model.
The term has an order of magnitude of about lO- 3 . It can
be written as:

[2CnboSbxbhb 2 CnboSb' xb' h 2Cnv^Svvtht 1 dc
1 v 2 - + __ + -(56)TPV0 Sdc dcc2 S AB' dc 2 S j dc 2S 2V.

or, using linear aerodynamic notation:

dc
-qdcS (Cmq + Cmn&) d- (57)

(Cma +.Cm ) is the same as that defined for the rigid
modls n important fact yet to be shown is that a13
must be large in relation to a15 [its complimentary term
in Equation (52)]to aid in insuring dynamic stability.
The terms in Equation (56) indicate how to make a13 large.
This can be accomplished without increasing a1, by in-
creasing the forebody size or by moving the cg forward
which increases xvt. This latter point will be examined
more thoroughly since the same adjustment will provide
better static stability. Xvt plays a critical role in
determining whether the model will have tendencies toward
dynamic instability.

a14 - This is simply the rigid expression for static pitching
moment. It is one of the largest terms in Equation (52),
having an order of magnitude of about 10-1. The term
must be positive if the model is to be statically stable.
It can be written two ways as:
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dc nbo + CnboSb + CnvoSvhI (dcS dcS dcS

or -qdcS Cma (59)

al. - This term does not show up favorably since it causes
trouble in the characteristic equation of the model.
A sign reversal on one coefficient of the characteristic
equation will occur if a,, is too large which, according
to the Routh-Hurwitz criteria, guarantees dynamic in-
stability. Unfortunately, al, cannot be indiscriminately
reduced since several of the constituent terms are re-
quired to be large for large al. and a14 which are con-
sidered to be favorable quantities (i.e., the larger,
the better). a15 is written two ways as:

1 V d [2CnvoSvvht" 1 dcP (60)T Osac L 2
Ld cS J 2V.

and, by using linear aerodynamic notation, as:

-qdcS (Cm)) dc (61)
(C 2V.

It would be difficult to have large a13 4nd small a,,
if not for the subtle difference between xy and xvt
because the forebody AB' is usually smal.. Xvt can be
written as a function of the volute length and the cg
location. For a given volute, xvt is controlled by
the cg location. Movement forward will be manifest in
greater xvt which helps to insure dynamic stability.
xv is not affected by cg location and, hence, does not
change. If the cg were to shift backwards and longer
volutes were added to the same forebody, a15 would in-
crease at a faster rate than a,3 which is undesirable.
xv and xvt are both related to center of pressure and
their definition carefully takes into account the volute
planform shape. Thus, the above indicates how the center
of pressure and the cg location need to be related.

a,6  This term is analogous to a 1 and represents the static
moment set up by deflection of the volute into the wind.
Note that this deflection is measured relative to the
forebody. Depending on whether the volute bends into
the wind or away from it, a,6 can add or detract from
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static stability. Like a a does not show up favor-
ably in the dynamic stability criteria. If the forebody
has the cg location in its geometrical center, then al.
is equal to a14 . This is evident from the defining
equation:

1 p 00 dcS _ (62)

or as: -qdcS Cm (63)

Thus a16 has the same order of magnitude as a1 . There
is no way to increase a14 without also increasing AB if
hj is measured from the model cg and is the same for
both coefficients.

a2 , - The second equation of motion was found through a moment
summation about the tail hinge point. Because of this,
it was necessary to alter the normal expression for the
inertia terms and include the effects of a linearly
accelerating coordinate system. When the inertia side
of the moment summation is written out, a21 appears as
the lead coefficient. In terms of the physical con-
straints:

Jv + ivRvFv (64)

a22 - This is the second portion of the inertia expression.
It is defined to be:

Iv (65)

a2 3  - When a13 has been determined, a,3 can be found by sub-

tracting the forebody contribution to a and multi-
plying by 0.66lv/h'. a23 represents a damping moment set
up by forebody pitching. Note here that the moment arm
is only 0.661v, since the moment summation center was
located at the hinge line. a23 can be defined in several
alternate ways, as follows:

V2Cnv°SvxvtO.661 dc(6

2 P 
d c 2 S J 2 V--6
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LA

0.661 v Xvt dc

qd S .6l, d (67)
m ht XV 2V.

a - (forebody contritution) (68)

a2 has a destabilizing effect on the dynamics of the
model. The same conclusion previously reached concerning
cg versus center of pressure location can be arrived at
here by examining the moment arm 0 .661v . Note that a1 3,
which serves the same variable in Equation (52) as does
a2 3 in Equation (53), depends upon ht which itself relies
on cg location for a fixed volute. Increasing rearward
location of the cg must be done with some care if dy-
namic stability is to be maintained.

a24  - This term is the static pitching contribution due to
excursions of 0 in Equation (53). It has a similar form,
as does a1 4,and can be written in several ways:

.pKSc [CnvoSvvI

Sd dcS 69)

-qdcS(Cm6) 0. 6 6 1v/ht, (70)

(a, -(forebody contribution))O661v (71)

a Dynamic stability is aided if a2 is large. One finds
25 here that a compromise must be made among the variables

since the previous findings concerning cg location
versus large iv are not manifest in a2 S. That is, a25
can be made large regardless of cg location. By increas-
ing Iv, however, to enlarge a2,, destabilizing elements
are at work through als and a2 3, both of which are grow-
ing with increases in lv. a13 also increases with lv .
The relation between these coefficients to determine
whether such changes in the model geometry cause insta-
bility is the subject of the Routh Hurwitz criteria.
a25 may be written as:

[2CnvoSvxv0.•661 dc(D
1 1Sdc  (72)

52
dcS 2V,,.
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-qd.S Cm )0 6 6 1 v dc (73)-qdcSh (m--fTt 2V.

AxvO'661v (74)
(a - forebody contribution) 

(

13 Xvth/t

a26 - This is a unique coefficient and includes the effects of
the elastic coupling. It is the only coefficient that
includes the spring constant kv. It has already been
shown that the value of the spring constant is important
in determining the value of pitching and damping moments
set up by the model's motion. The dynamic criteria shows
that large kv helps to provide a dynamically stable model.
a2  is a function of a24 which can be typified as an
untavorable value if too large. For a2 , to be large
without compromising stability through a2,, k. must be
large. This stands to reason since, in the limit as kv
approaches infinity, the system reduces to its rigid
body form. a26 is easiest to use defined as below:

a 2 + kv (75)

All of the preceding comments regarding dynamic stability
result from the Routh Hurwitz criteria. An absolute stability
criteria involving the model constraints was not obtained be-
cause of the great amount of algebraic work and the practically
impossible task of using the results. Thus, the volute equipped
body has not been proven to be unstable for a given type of con-
figuration. To prove that volute equipped models cannot be un-
stable requires writing the coefficients of the characteristic
equation in the stability criteria scheme and insuring that the
proper terms will not change sign by relating the constraints
back to the original aijws.

It was found by computing many examples for a variety of
different volute and forebody combinations that a good indi-
cato- of impending dynamic instability was the coefficient C
of the s3 term of the fourth degree characteristic polynomiai!
This term will be the first one to change sign, thus indicating
dynamic instability. That is not to say that no change is
reason not to invoke the remainder of the stability criteria.
If the mentioned coefficient is much smaller than the other
coefficients but does not change sign (all coefficients would
then have the same sign), there is a good chance the model will
still have two unstable roots and two stable roots. The Routh
Hurwitz criteria is discussed more fully in Appendix I. From
that discussion the following observations are made which tie
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the preceding to the ai, s . The fourth degree characteris-
tic equation can be wrliten as:

C s 4  C1 2s
3 + C13 s 2 + C 1s + cs = 0 (76)

The coefficient of interest is C1 2. C1 2 can be written in terms
of the aij t s as follows:

C1 2 = (ala2 5 + a 2 2 a13 (21 a 15 + a 1 2a2 3) (77)

Since C 12 may be the first of the Ci 's to go negative, a
necessary but not sufficient conditioA for dynamic stability
is:

a a a a > a a +a a11 25 22 13 21 15 12 23 (78)

This inequality constraint is a relation between the inertia
of the cylinder and volute and the damping properties of the
cylinder and volute combination. Note that the spring con-
stant does not appear in Equation (78). The small mass assump-
tion used in the J method will reduce Equation (78) to:

a a > 0 , a > 0, a > 0 (always) (79)
11 25 11 25

Thu3 massless volutes will probably be stable. Giving the
volute mass requires matching the a.'s so that C cannot

usully be positive which re-change sign. Note that C, will usl e t 12

quires that C 12 be greater than zero.

Equation (78) is useful in finding out if a given confi-
guration will have an obvious dynamic stability problem. Sub-
stituting for the volute antl cylinder geometrical and inertia
properties for the ali's , the following equation results:

+ __v + _ x >1 (80)Cm vK + 0 "66 1v vXvt j < IvCmq + Cm&i
gid t. v 1  rigid

Note that Kv, h' Iv, Xvt , iv are all interdependent and
changing any one changes the others. Increasing Iv causes
the remaining parameters to increase. I, however, can be
changed without affecting the other variables by increasing Sb .
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This is a favorable trend, since Equation (80) shows that I re-
duces the left side and enhances the inequality. Having a
large cylinder in relation to the volute tends to produce
greater dynamic stability, holding all other parameters the
same. Equation (80) can be used to examine the stability of
several cylinder volute combinations.

Table X lists theAaiis for several models. These values
were calculated using xv - 0 .6 6 1v and xvt =1 +
Note that here an approximation was made since the earlier
rigid work indicated that these variables ht and hv will be
functions of e and 6. ht was set equal to 1o + Ilv and hv =

0.661v . The ails were multiplied by 1000 which gave the
following set o equations:

Model (3+1)'

0.2046 + 0.036 + 0.0434 + 38e + 0.0092 + 336 = 0

0.0360 + 0.0116 + 0.0094 + 9.600 + 0.0027 + 279.66 = 0

Model (3+2)1

0.343" + 0.1129 + 0.077 + 660 + 0.028 + 616 = 0
0.112" + 0.058" + 0.0256 + 24.40 + 0.0116 + 294.46 0

Model (3+3)'

0.605" + 0.2726 + 0.1246 + 1030 + 0.064.+ 986 = 0

0.272" + 0.1566 + 0.0616 + 51.5 + 0.0346 + 321.56 = 0

Model (3+5)'

1.2966 + 0.7374 + 0.2916 + 2030 + 0.193A t 1986 = 0
0.7350 + 0.4606 + 0.1664 + 116.40 + 0.1156 + 386.46 = 0

Model (3+6)1

S.7609 + 4.2229 + 1.0786 + 535o + 0.929 + 5306 = 0
4.2226 + 3.1836 + 0.7696 + 381.40 + 0.675( + 651.46 = 0

From these equations, the characteristic equation can be derived
by noting that the initial values for 0 and 6 will not be zero.
Substituting for the variables according to the scheme in
Appendix I, the following set of equations can be written:

Model (3+1)'

S 4 + 0.295s3 + 25,850s 2 + 5,400s + 4,746,000 = 0

Model (3+2)'

s 4 + 0.313s 3 + 12,960s 2 + 2,800s + 2,440,000 = 0
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Model (3+3)'

s + 0.289s 3 + 8,330s 2 + 1600s + 1,376,000 = 0

Hodel (3+5)'

s4 + 0.335s3 + 6,200s 2 + 1400s + 947,000 = 0

Model (3+6)'

s + 0.278s 3 + 3,050s2 + 570s + 278,000 = 0

To find the roots of these equations, it is necessary to use the
results of Appendix I which outline a graphical scheme. It is
helpful and also time saving if the characteristic equations are
examined with the Routh Hurwitz criteria before attempting to
factor them. The values of the criteria terms are:

Model (3+1)'

1 25,850 4,746,000
0.G 95 5,400
0.011 6.607
0.125

Model (3+2)'

1 12,960 2,440.000
0.313 2,800
0.067 41.32
1.295

Model (3+3)1

1 8,330 1,376,000
0.289 1600
0.335 165.991

10.026

Model (3+5)'

1 6,200 947,000
0.335 1400
7.038 2,443.452

458.451

Model (3+6)'

1 3,050 278,000
0.278 570

65.074 12,392.047
18,542.087
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Since the first column of each scheme does not change sign, all
given models are dynamically stable. Thus, the quadratic fac-
tors of the fourth degree polynomials will all have positive
coefficients and will factor into negative real and ± imaginary
parts. Thus each polynomial will appear as:

(S 2 + dis + d2 ) (S ' d3s + d4) (81)

The graphical technique requires solution of two simultaneous
equations: (Reference 1)

S12 + Cl C 1 3 + d2
d 2)2 + d ] (82)

2C2

C14/Cj(d 2 ) C12/C 1 (d 2 )d C15/C d 2
2  (83)

Either equation is rather complicated to solve by plugging in
arbitrary numbers. For stable motion it is known that values
for d must be positive. d, and d3 will be much smaller than
d2 and d4. The latter two are related to the oscillating
frequency of the model. The above type of characteristic
equation is similar to the linearized equation frequently en-
countered in studying pitching motion of low speed aircraft.
In these equations the important angular quantities are pitch
angle and angle of attack. The angle of attack differs from
the aircraft pitch angle in a similar manner that the volute
angle of attack differs from the cylinder pitch angle. The
mechanics of the two systems are different since the volute
angle of attack is the result of aeroelasticity, whereas, the
aircraft wing angle of attack is purely an aerodynamic phe-
nomenon (excluding aeroelasticity). These comparisons mean
that the volute model will probably have a short period mode
and a long period mode, as do aircraft. The frequencies of the
two modes should be quite different, one being high, the other
being low, analogous to an aircraft's short period and phygoid
mode of vibrations. d2 was chosen as the parameter easiest to
estimate since it represents a frequency quantity. If the low
frequency vibration is estimated to be about 2 cycles/second,
d2 = 157.75. This is a good approximation to begin with in
solving Equation (82). The following illustrates the technique:
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(9) Example: Solve for the roots of Model (3+3)

(83) (82)

d, d2  d, d2

0.193 168 174 165

0.195 169 28.49 168

4.69 168.5

1.846 168.56

1.372 168.57

0.898 168.58

0.796 168.59

0.577 168.595

neg 169.000

The right-hand side shows that increasing d2 causes
d, to drop in value and to continue dropping until
it becomes negative. Inserting 168 into Equation
(83) gives 0.193, which compares to 28.49, indica-
ting that the solution is still off a good bit.
At 169, d, computes to be 0.195, a minor change
from 168; however, the right columns show d, pass-
ing through zero which would indicate that the solu-
tion must lie between 168 and 169. Both of the above
sets of columns plot out as straight lines and no
further points are needed. Figure 22 is a plot of
the above, the intersection being the value of d, and
d2 . Direct division yields d 3 and d4 . The factors
are:

d =0.194 d =0.0951 3

d2 = 168.582 d = 8,161.4

With these values for the factors, the quadratic
roots follow directly.
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I
s, = -0.097 + 2.067i, i = F --

S2 = -0.097 - 2.067i

S 3 = -0.048 + 14.41i

s4 = -0.048 - 14.41i

The particular solution for the two equations of
motion is:

O= A~e -0.097t (sin 2.067t + p1) + A2e -0.048t (sin 14.41t+" 2)

6= A e -0.097t (sin 2.067t + i 3 ) + A4e -0.048t (sin 14.41t+J)

At first glance it would appear that there are eight arbi-
trary constants. There actually are only four, however, since
the Ai and pi are functions of four independent constants found
from the initial conditions e, 6 and 6,6. The technique for
finding the Ai and i terms whereby the complete expressions
can be written is outlined in Reference 2. Since stability is
the prime concern of this program, the technique is not included
in this report. The equation is composed of two angular quan-
tities damped at different rates. The mass of the volute dras-
tically changes the motion of the forebody. This is manifest
through the additional high frequency term in the e equation.
If the mass of the volute was sufficiently small, this term
would have negligible effect on 0 . The motion would be deter-
mined primarily by the leading term. At t = 10 seconds the
long period mode has damped to 38 percent of its initial value
and the short period mode has damped to 62 percent of its ini-
tial value. Wind tunnel testing showed that the model did in-
deed have the kind of motion indicated by the solution equation.
The short period mode was easiest to follow with the eye and
damped out first. The remaining high speed motion was then
evident. Unfortunately, this high speed vibration only damped
out partially and continued to vibrate. This limit cycle can-
not be predicted by the simple linear theory. At this point
in the two-year effort it is safe to say that the residual
motion results from interaction among the pitch, yaw and stretch
motion of the spring. It was somewhat surprising to see large
amplitude second harmonics appearing in the bending of flexible
helix volute. These waves in the spring were quite evident.
The spring motion was unsteady and appeared very complex. An
approximate analytical method will have to include two dimen-
sional oscillations (coning) and possible second harmonic ef-
fects (three degrees of angular freedom). This type of analysis
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is beyond the scope of the first year study but may be the sub-
ject of the second year study.

The remaining roots of the flexible models were solved for
the method of the preceding example. The roots of these models
are:

Model (3+2)'

s = -0.104 + 2.164i

s 2  = -0.104 - 2.164i
S3 = -0.043 + 25.549i

S4 = -0.043 - 25.549i

Model (3+3)'

s, = -0.109 + 2.201i

s 2 = -0.109 - 2.201i

S3 = -0.048 + 17.998i
S4  = -0.048 - 17.998i

Model (3+5)'

Sl = -0.115 + 2.040i

s 2  = -0.115 - 2.040i
s3 = -0.053 + 12.380i

S4 = -0.053 - 12.380i

Model (3+6)'I

s = -0.095 + 1.550i

s2 = -0.095 - 1.550i

s3 -0.044 + 8.660i

S4 = -0.044 - 8.660i

With this analytical information it is possible to construct a
curve relating the damping power of the tail along with its
stability power to the volute length 1,v . (Figure 23 through 26)
These can be used with caution to predict the frequency and
damping characteristics of volute cylinder combinations dif-
ferent from the samples. Caution must be exercised because of
the vast number of assumptions used to derive the analytical
expressions. Also, the forebody in a particular problem must
have about the same AB as the plotted values, which was about
0.440. It is best to refer back to the theory and begin with
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the basic expressions for the ai 's and derive the stability
margins for each case. Even wheA this is done, the answers
represent only a first indication of the model stability cha-
racteristics and should be interpreted as necessary but not
sufficient conditions for dynamic stability.
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SECTION IV

FINAL DESIGN

The preceding sections served to outline two methods for
finding the static and dynamic stability of volute equipped
cylinders. The first method for rigid volutes only showed
which of the volute parameters entered into the stability cri-
teria and provided a base for the more complex flexible analy-
sis which followed. Because of the anticipated complexity of
the flexible analysis, the first approach there assumed a
small mass volute but allowed bending. This method took into
account bending by altering the rigid expression for Cm1 and

(Cm + Cm*) by a constant factor dependent upon the geometrical
andqstruc ural constraints of the volute tail. The final analy-
sis examined the dynamic stability of several models through

characteristic equations extracted from the two angular equa-
tions of motion. It remains now to tie the preceding work to-
gether so that a systematic method can be used for a given pro-
blem. One more piece of information must be provided along
with the aerodynamic analysis to allow this.

All aerodynamic work derived points to a best design
length volute for a given cylinder; however, it may not be
feasible to fit the optimum length into the cylinder cavity
(Section I). The maximum length of the volute here is deter-
mined by the spring thickness and the cavity diameter. In some
cases the design length obtained in the J method may be larger
than the maximum length capable of being stored in the cylinder.
To make matters more complicated, the spring constant kv ap-
pears to be inversly proportional to the volute length for a
given cross sectional inertia which changes the optimum lv .
This latter fact represents one of the most difficult para-
meters to estimate. That is, for a given material wound in a
spiral to a length 1v, what is kv?

During the study program it was discovered that kv varies
inversely with lv. Only a limited number of volutes were
tested, but these followed Equation (84):

z
kv = (Constant)/ iv (84)

The spring used on Model (3+4)' was taken as the center point
to evaluate (Constant). If z = -L the proportionality con-
stant was found to be 0.501. If a given spring is close to the
mentioned spring (Appendix II) in cross section material and
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V

length, Equation (84) will give good answers. Large excursions
must be dealt with separately.

For a volute to have maximum efficiency, it must be wound
as lightly as possible. That is, viewed from the side, there
should be no space between successive coils. To determine
whether such a spring will fit into a given cylinder cavity,
Equation (85) can be used.

nt i < R (85)

To find the length of uncoiled wire needed to construct a
volute with given iv, use Equation (86):

iv= 2i (R - (n I) t1) (86)

The volute length iv is approximately,

S= nt2  (87)

Spring steel is recommended as the volute structural material;
specifying the cross section would be at the discretion of the
designer. The key flexible volute [(3 + 4)'] test model mat-
erial, cross section was 0.020 x 0.200. For this material,
Equation (84) can be used to find kv. Using the J method to
maximize Cm with respect to volute length lv, variable kv =

f(iv) shoula be used if Equation (84) can be used or an alter-
nate derived, based on different material than 0.020 x 0.200
spring steel. Variable kv has a profound effect upon Cm.
Cm. falls off with Iv faster for kv = f(lv) than kv constant.
This fact adjusts the design iv to a smaller value. Example 6
was carried out for kv = constant. If Equation (84) is used
instead, Table XI results:
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TABLE XI. Cinaf/Rad.

Let k =0.501

lv Jv Cmctf

0

0.5 0.708 0.3343 C..0021 -0.03485

1.5 0.4090 0.3237 0.0337 -0.11798

2.0 0.3543 0.3145 0.0612 -0.15786

2.5 0.3168 0.3019 0.0988 -0.19142

3.0 0.2892 0.2876 0.1415 -0.21744

3.5 0.2678 0.2725 0.1866 -0.23600

4.0 0.250S 0.2572 0.2322 -0.24695

4.5 0.2362 0.2423 0.2767 -0.25180

5.0 0 .2241 0 .2281 0 .3191 -0 .25162

5.5 0.2136 0.2148 0.3588 -0.24740

6.0 0.2045 0.2023 0.39S9 -0.24000

6.5 0.1965 0.1906 0.4310 _-0.22929

7.0 0.1890 0.1802 0.4621 -0.21855

7.5 0.1829 0.1705 0.4910 -0.20599

8.0 0.1771 0.1614 0.5182 -0.18911

8.5 0 .1718 0 .1533 0 .5424 - 0.17919
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These values were plotted in Figure 27 and compared to the re-
sults of Example 6. If kv cannot be found as a function of lv,
use the best constant value (from elastic testing if possible).

It is likely that the first step in designing a volute
stabilizer will be to insure rigid static stability. The
approximate dimensions of the best design volute are obtain-
able from the simple rigid analysis if the spring constant
is very large ( 2 pounds/radian), or if the volute is short.
Generally, the volute stabilizer will not have k as large as
2 pounds/radian, probably closer to 0.300 or 0.4060 pounds/
radian. In these cases, the J method should be used to follow
up the first order approximate rigid analysis and the tail
length altered according to the results. Dynamic stability can
be checked for this configuration best in a wind tunnel. How-
ever, the two-dimensional angular freedom analysis will provide
at least a first approximation to what the dynamic stability
characteristics will be like. Since the observed limit cycle
motion referred to in the text appeared to result from pitch-
yaw coupling, a more precise analysis will have to wait until
completion of the second year study.
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SECTION V

CONCLUSIONS

The preceding analysis,together with data collected at
the Eglin Air Force Base low speed wind tunnel and free flight
data collected at the Von Karman Gas Dynamic Facility, proved
that the volute stabilizer is a feasible and practical approach
to providing a compact stabilizer for cylindrical forebodies.
The rigid and flexible body analysis yielded a convenient
method of estimating the effects on both static and dynamic
stability when the various geometrical constraints of the volute
shape are altered. For each case, the analysis provides the
necessary and sufficient conditions to insure static stability
and thereby proved that properly designed and matched volute
tails insure absolute static stability.

The extensive amount of wind tunnel testing conducted at
the two facilities clearly indicated that all test volutes con-
structed of coiled spring steel operating at M = 0.2 to 0.6
and Rn = 1 x 105to 1 x 106 suffer a certain amount of residual
vibrations which apparently never damp out. This, as shown in
the analysis, can be offset through proper volute design; how-
ever, it appears that these limit cycles can never be removed
entirely. The effect on stability can be reduced to a point
where the forebody wanders through ± 5 degrees arc. The ampli-
tude of the limit cycle motion is sensitive to the lateral
spring constant of a given spring tail and under some condi-
tions will produce (Cm + Cm&) > 0 causing divergence up to
a certain maximum amplitude, the largest observed to be about
± 30 degrees.

Under nearly steady state conditions, the cylinder equip-
ped with a volute stabilizer will trim out at a trim angle
which is controlled by the volute length and the cg location.
This trim angle can be reduced to nearly zero if the cylinder-
volute combination is carefully matched. If this is not done,
the combination can be expected to trim out at an angle dif-
ferent from 0.
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APPENDIX I

ANALYSIS

The l-d rigid volute model is analyzed in detail below.
Because this particular model is more amenable to analytical
treatment than the remaining flexible models, this section
identifies and treats the basic volute parameters which affect
aerodynamic damping and pitching moment. The effects of cg
movement and forebody induced tail blanking are included
separately.

At the outset of the analysis, the following assumptions

are made:

(1) The volute is attached rigidly to the forebody

(2) The volute is a complete cone

(3) All area behind the cg acts as a tail, all area
in front of the cg acts against the tail

(4) Normal force coefficients are based upon cone-
cylinder combinations and strictly cones or cylinders

Volute and forebody geometry will be identified according
to the following diagram:

Z (Aero)t
(Aero)b I xb xt

Xcg 10

x d C .. .. . dv

iv 4
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A stabilizing pitching moment is set up primarily because
of a normal component of velocity relative to the volute fore-
body axis. By finding this component of velocity and an appro-
priate normal force coefficient evaluated at r/2, the normal
force can be calculated.

Relative Velocity

xt xb

Velocity field due to rotation

Moving out to a point on the forebody, the relative velocity
there can be found with the aid of the vector diagram belo.

' r

x i x b:s 
Vb

6XbcosO

-e

V= - exbsine) 2 + (0xbcos8)]

The angle between the free stream velocity and the relative
velocity obtained from the diagram is:

b = tan 1 F6xbc°Se
IVt- exbsine

76



Tail quantities are obtained in a similar manner. The rotation
induced field adds to the free stream field to give:

Vr = V, +6xtsine)2 + (6xtcose)2

- xtcos eot- tan Lv0 + 6xtsinJ

Assumptions:

(5) Approximate xb and xt with the average values b and Xt.

(6) V >>x so that Ob a 6Xb/V, t 6ext/V.

To find the normal component of velocity, the angle of attack a
must be found. This is done with the following diagram:

VC0r at Ot x/

V- x
Xb

ab= e b

at= e +t
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With the angle of attack for both the "b" and "t" sections
known, the normal component of velocity is expressed as:

n V r
Vb Vbsinab

n r
Vt  Vtsinat

V = Vcsine - exb

n

Vt = V,sinO + 0xt

Moment Balance

To find the total aerodynamic moment acting on the total body,

moments are summed about the center of gravity.

Assumptions:

(7) Use average moment arms hb and ht

(8) Use Cnto based on cone-cylinder values evaluated

for iT/2 radians.

(9 Sin3 0

(10) There is no tail forebody interference

Then,

+ Atl
o

6= TpCntoht(Vo0 + xt6)!V~o + xt0ISt

- TpCnbohb(V.0 - XbO)1VO - Xb01Sb
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Assumption:

(11) The ratio le -xb 01  10 +

V00  XtV-.

Then,

-6= Ft + CnbohbSb

2+ thx~t', l + X- I _

V co Ctt Stx

Let

Vh= hbSb/htS , + ^X/V +

Assumption:

(12) Xnb
c ht~tst + Cnb -v 1

Cnb~b

Gnto t~tStL + - I

and CnthtSt L-Cnb hI

CntohtSt Li o, , F 11i lei
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(13) Let CntIoIeP Cnto6. Static normal force coefficients

can be expressed as Cnt = Cnt, at + Csin 2ca. Thus Cn.t0

Cnt,(1r/2) + C. This assunlptiofl averages Cntolej over 8,

and requires that Cn6 be small.

%V2d~~eStCntoht~kt Cnbb____ Ah d A

2f CLd 2 S L njtxt hI...

_________ [ nb Ai

[1 ht -b Vh 6
dcS L Cnto j

From linear aerodynamics:

2 ,PV2 dS [6 2VT (Cmq + Cm&) + Cma 61

By identification of common terms:

(C + M&= 2StCntohtxt 1+Cnboxb1
(mq +m)=- d2 S [1 n + t)C - Vhj

Cm~~t StCntoht [ - o~h0

if, V = htSt/dcS

- + Vh& it nbeb
(Cmq +-ct Cnt0Vh 1 +

Cma - CntoVh -- xrVh]
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The effects of cg movement can best be determined by
relating the movement to pitching and damping derivatives
through the above equations. Taking the pitching moment slope
coefficient first:.

Gin = Cto~/ [ -CflbhbSb

CnbohbSb 1 m

for, CntohtSt

This constraint can be related to the cg location by expres-
sing the individual terms as functions of xcg. When this is
done:

1E - dcxcg) (lb - xcg)

CnvoSv(lb -xcg + alv) -Cnbo-cg(xcgdc)

Sb __ _ __ _ __ _ __ _ __ _

St
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The individual terms as functions of xcg are:

Cnbo = Cnbo

hb =

Sb = dcxcg

Cnto i-1 (CnboSb + Cnv v) 0

CntoStht CnboSb (lb - Xcg + CnvSv(lb - Xcg + alv)

t

Sb =Sf - dcxcg

Note, that because Cnto is made up of normal force coeffi-

cicnts of both the cylinder and cone portions aft of the rota-

tional axis, it is a function of cg location.

After some reduction:

Cma = Xcg (§f (nbo + Envd - Cnvo) +

Cnv(l - Sf) (alv + Ib) + 2nbgl

Where

Xcg Xcg /dc, Sf = Sf/S, lv = lv/dc, lb = lb/dc

A more convenient form of the above was obtained from Reference
3 wherein a method is derived which allows prediction of Cma
about any axis, if Cm' is known about any other axis in the
forebody. The transfer equation is:
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Cma Cm+ dc Cn"
dc

Cn has to be determined for each volute-forebody configura-
tian. Cm, can be obtained by setting Xcg lo zero in the cg
equation or, directly, from the definition of Cm.. When this
is done:

-Cm' = Cnvo Lf ) c +  nb o Sf lb
-S C - a + f)42Gnbo c

= htt 0  nCnbo CnboSv CnvoShtCnt e, htCnto = lb + -

dc 2 2S C $IV

+ a Cnvo Sv IV
S

The damping derivative turns out to be a quadratic function of
the cg location. The equation is too unwieldy for general
usage but is duplicated below for completeness:1 F" /3

Cm + Cm. = -X C g (3

Cmq a m cg 4 Cnbolb + 1 v LCnvo/ 2 + a Cnboj)

+ Xc.g. 4~b ob 2 _Cnvoalv2  - lvlb [fnvo 2  - a Cnb 1)

+ Cnbolb 3 + lb2 lv/ nvo/2  + a Cnb + Cnvlv lb

+ Cnv v3 a21
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The derivation follows that used for Cma as a function of cg.
xtis defined to be:

xt= (b - Xcg)/2 + alv

xb Xcg/2

Since CML was found, it is possible to use parallel axis trans-
fer equations to find the effect of cg movement of the damping
derivative. This equation is extracted from Reference 3 and
appears as:

(Cmq + Cm&) = (Cmq + Cma)'+ x-cZ ( Cq)
dc

- C9< Cma 2 Cn-C-- a

dc mdc/ na

It is much easier to use than the one derived directly from
the definition. If the primed parameters are measured from the
nose of the forebody (consistent with the definition of Xcg)
and Cnq is small, the damping derivative as a function of cg
location is:

htCnto
for, Cm =

dc

nd, Xcg > 0 (Cmq +Cm) = X2  Cn

cg ~ no mq + a + g d2

+ x cg (Cmq Cm)

\ d /Xcg = 0
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2___ htCn n-('
X cg + Xcg ( t t t

The cg location for maximum damping will occur at:

x =,_ ht Cnto
cg 2 n a

In the derivation of the above for,nulas, an average moment arm
and average value for the rotary velocity field was assumed.
The average value was introduced with the constant multiplied
by lv(i.e., alv)."a" was used both in the expression for aver-
age moment arm and average rotary velocity. The value will be
taken as . The expressions fqr xt, ht, and later Xvt are
complex and depend upon 0 and 0. The following analysis is
devoted to this subject:

it V2d S = V 2  S
ave

+ Sv

Plugging in the necessary values and reducing,

I (V2%sin 20 + 2VcxsinOe + 6 2x 2 )dcdX

10

+

10 + i v

(V2 sin 20 + 2VxsinO6 + 2 x 2 ) dv (x - 1o) dx =
Iv

10
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= (a d dclo) (V%,sinle + 2V~sinOe xt + 6 ZxtZ)

A 2 to + 3
1 0 1 V 2+ 

1 V + 2 1e1o
X t  3 3,8' =0

210 + iv

1 2+ Ivl + 1 2

AA

Axt= 2,l +=

AXvt

II-.v is found from the following identity:

V2 dx = V2 ave S

0

Inserting the necessary values and reducing,

F2 Osin 2e + 2VsinO(x + 1o)6+ 62(X2 + 2xlo + 1o2 iv x dx

o2t dvlv(V 2csin2O + 2V,,sin66xvt + x2£vt2)

Av2= Iv 2 + 41vlo/3 + l2a,e = 0

xvt ~0/ + =0

x'vt = l o + -1 V 0

3

ht

ht is found with the following identity:

fIV2xdS = V2ave h'tSv

Sv
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Inserting the necessary values and reducing,

(x 10) [.2sin2e + 2VcsinOO(x + lo) + 02 (x + 10) L x dx

1 ( V 2.S2 0+ 6 ^
dvlv( 2 sin2e + 2VcsinO6xvt +2X2)h t

1 3 2ht' 1 £z- T lV 2 + 2 1021 v + 5 1iv 3 + 1o3), 0Ut 2
2

t 10 + 1 Iv,0 = 0
The above forms are gotten by carrying out the integrations and
alternately setting 6 then 0 equal t9 zero. Th'e three variables
span a range of values which can be eons-tdered to be the upper
and lower bounds of each during one cycle of oscillation. It
was found that using xt = lo/ 2 + Tiv 'gives reasonable answers
and is easier to use than the derived expressions which them-
selves are only approximate. ht and Xvt give good answers (le-
fined as h' = (Io + .Iv) and Xvt = (io + 1Iv). Note that in
the expression for h at 0 = 0,,h t is inversely proportional to
the square of xvt. plot of ht shows that for certain values
of Iv, h' actually decreases for increase in 1v up to a point
and then increases.

The preceding forms do not consider forebody interference.
Because the forebody interrupts the air flow over the volute
tail, the effectiveness of any volute is lowered. To find what
percentage of the tail is blanked out by the forebody, the fol-
lowing approximate analysis is offered. Note that here a trape-
zoidal area for the volute is used instead of the typical tri-
angular planform. This is done because at low angles of attack
this additional area has a significant effect on the volute
performance if d is large or about dvS. The following diagram
is useful:

6+6°0

d"d
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tan6 o - d , (y-d.)xtan6 0
x

Sv (two trapezoidal pieces) = Zx tan6 x
1X

I

S v ' = t a n 6 o ( 1v 2  
- x ' 2 ) , x =d _ _ _ _ _ _ _ _ _

2(tane + tan6o) 2(tan0 + tan6o)

7V2+ 2a~c

Sv -- tan o( t dn  tan6 + tan6°l 2

Sv iv dv 1

dv2  2dv lv8  (tanO + d
21v

Sv" (shaded portion) = d' (1I 
x' )

S (total area) = Sv ' + Sv"

Overshadowing the previous analysis is the obvious fact
that the volute is not rigid, but flexible. This fact alters
the previous expressions for damping and pitching derivatives.
To make the analysis as tellable as possible, the first flex-
ible volutes considered will have small masses and moments of
inertia.

Using the following diagram, basic flexible volute for-
mulas can be derived.

(Aero)b  ht-
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The stability equation for the flexible combination can be
written as was the rigid form if the volute contribution con-
tains the pitch angle and the volute angle in the aerodynamic
force expression. Symbolically this is:

x 1

-Q _ + (aero) IO + (aero) v h'
C gIM _. (aero)b 2 b 2 t

The inertia torque of the masses can be shown (Reference 4)

to be:

2

where, I= 'ITP 2 + 2MvRvrv + Iv+II

Kv = MvRVF v + I V

Written out the whole expression is:

T nboSbhb + CnboS~h Cnv16 + Kv =--V OSd c ++

j dcS dc dcS]

LXA~h 2Cn Svivtht' d2CnboSb~bhb 2CnboSb bh
+ - - - - + 04. - - - (

dc2S dc'S dc 2 S 2Vo0

+ (nvoSv + (2CnvoSvvht dc

dcS average

To take a closer look at the tail reaction, a free body diagram
is drawn and moments summed relative to a nonrotating but line-
arly accelerating observer. To account for this, the inertia
term is written according to:

Imexternal = ( x (wxR) d)+ P'lv(Rc.n.Xao)m

89



Which yields in terms of problem variables:

MVRV , v 6+ (5

Iv + MvRv~v (Aero)v

- -r

Hr

Inertial Frame

- If the volute is idealized to have negligible mass and moment

of inertia, the above reduces to:

- k6 =(aero) v a 1V T 2 Cnvo ( 6 al

This is a constraint on 65 expressible as:

TPV 2 nvo (D a lvSv-e

kv + *-V2 C (D a 1vSv

Note that the damping force was assumed small compared to CnvoVC20S.
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The inclusion of this expression into the basic flexible form
equation reduqes the expression to the familiar rigid form with
variables , e, 0. The coefficients of e and 6 respectively
are.'

Id Kv,= 1 f [ (CnboSbh + CnboSvht

pV2 dSdc L LdcS

"'C hb +c JnSvi] h
CnboSb CnvoIVht

d cS dcS J

2CnbSbXbh b  
2 Cnb SbXbhb

+ PV2Sdf( _bo + dS^I 12 P
dc 2S dc 2S

2CnvoSvxvtht 2JCnvoSv~v ht 6 d
dc 2S dc2S )j

For J = 1 the volute is totally ineffective and its contribu-
tion in both damping and stability are nullified. For J = 0
the equation reduces to its rigid body form. The effects on
the values of (Cmq + Cm&)and Cma can be inferred by reducing
the effectiveness'of the volute by (l-J) and including this
value instead of the full value into the rigid body equations.
By doing this, the tail effectiveness will be reduced and the
overall stability of the combination will be reduced. Simi-

larly, the damping effectiveness of the volute suffers by the
same factor. Note that since the whole tail (as defined in
the rigid analysis),is not affected by the volute flexing,
the aft portion of the forebody which helps in stability is not
affected. In terms of J, the new flexible body damping and
stability coefficients are:

~J Cnv o h :S v

Ca/flexible 6 irigid] dcS
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mq + Cm 2JCnhSv v

m qm Cmfo

If the volute is not light or has negligible inertia, the
derived forms will not be accurate. A complete dynamic analy-
sis is somewhat frustrating since the results are so compli-
cated as to be almost useless for general design purposes un-
less a convenient means of interpreting the equations is pro-
-vided. Here, an attempt will be made to present the com-
plete equations so that useful design information can be ob-
tained.

The analysis begins with the general equation derived
for the forebody volute combination, and the equation derived
for just the volute without the small mass assumption. The
two equations have the general forms shown below:

I + Kt6= a 1 3  - a 14 a 6-a 16

(I V + MVRVFV)6 + Iir =  a2 3 6-a 2  - a 2 5  a 2 6 6

The coefficients are:

= TV2SdcF2CnboSbb bhb + 2 CnboSbXbh 2CnvSvXvth ] dcI

a13  2P c L C2S dC2S --- 2s 2V
d d- I

2 Cnbohb CnbSbh b Cn vht
a1  = 2pV

2 Sdc + + 0dcS dcS dcS

LPV c (C v ht, dc t '2 CnvSX^~~ S dcvh %
a,, 2 vSdc n cS -1, a 1 6 = 2 o Sdc S

2V dc
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-,C a2v v a 2
PV 2cc 2no vxva dcP pV " al

a23 = - 2sd_ -V-dc.., a2d = - .Sd c (dc 2 S / 2V,. dc S

c(Cno Xvalv) dc 4) (C Sd n al
a 25 = -.pV2SdC( v a, a2 6 = - v d c . .. .) + kv

dc=S 2VO ) dc S

The two equations for which a solution is sought are:

a. + a + a + a + a + a 6 = 0

a 2 1 0 a 2 2  a2 30 a 20 a 26 a26 6= 0

To find a solution assume that:

0 = -e s t , = est

Insertion into the equitions of motion yields:

S2 (ale + a1,2 ) + S(a136 + a,,6) + (a 4 e + a166) = 0

S2 (a210 + a22 6) + S(a 0 + .5 (6) +0

These equations for the assumed 6 and 0 will give solutions

different from zero only if:

(ailS 2 + a1 3S + a,4)(a 12S2 + a1 5 S + a,,)

= [o] for o

(a2 S
2 I a2 S + a 2 4 )(a 22 S

2 + a2 S + a 26 )

This requires that:

CS +S4 + + C S 2 + C S + C 1 = 0

C11 = (al1a.2 - a1 2a2 1 ), C 1 5 = (a 1 4a2 6 - a 1 6a 24 ) etc.
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Solutions to the characteristic equation are:

S, = -nI + ip, S2 = -n ip,

S 3 = - n 2 ip2

In terms of trigonometric functions:

0 = e-nit(A cos p t + A2sin p t) + e-n2t(A3Cos p t + A sin p t)

6 = efnlt(B cos p t + B 2sin p t) + en 2 t(B 3cos p 2t + B sin p 2t)

Before delving deeper into the solution equation, it is
useful to examine the characteristic equation further since
stability of the system can be found by examining its co-
efficients and factors. Static stability can be inferred
immediately by examining the values of the constant portion
(C~s) of the characteristic equation. ft should be positive.
If it is positive for one configuration and a single design
parameter is varied so that Ci5 changes sign, then one diver-
gence (static instability) appears in the solution (Reference
1 ). To find out what effect this change has on dynamic
stability, the characteristic equation needs to be analyzed
further. Routh's Criteria is a convenient means for finding
whether the system is dynamically unstable. This method is
outlined in Reference 1. Briefly, the technique is as follows:

The quartic is:

C1s +C Cs 3 +C Cs 2 +C Cs+ Cs = 0
C11 s C12 s C13 s C14 s C15 0

Form two rows as follows:

C11 C13 C15

C12  C1 4 0
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Construct additional rows:

1 )3P P 3 231 '~2

P 1 0 0

where:

C - P =C C

P31 = 'C12 13 11 14' 32 12 15

P41 =  
31 C14 - 32 C12

For the system to be dynamically stable, each element in the
first column must be positive. If the mentioned change in a
single design parameter results in an element in the first
column changing to a negative value, then the system will have
one divergent oscillation.

Once the volute-forebody characteristic equation has been
obtained, any of several root extraction methods can be applied
to determine the degree of damping and the two free vibrations
of the system. It is intuitive that the system will vibrate in
both modes and will be lightly damped so that the solution roots
will have negative real parts and imaginary parts. Since the
equation is fourth degree, there must be two quadratic factors
obtainable by the following method:

Rewrite the quartic.as:
(S2 + d s + d,)(s 2 + d3s + d4) = 0

Expand this equation and equate coefficients to the original
quartic:

C12  C13- d +d -=d +dd +d
C11  1 3' C 1 1 2 1 3 4

C14  C15
-= d3 +d 2 , - d 2 d4

C11  C11
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These equations can be solved to yield:

C , [C C C
dC 12 2 13 + d is 2

-= 2 ±d2C,1 2C1 Cl C d

CI /C 1  (d2) - CI2/C (d 2
2 )

d, =

C s/C 1- d 2 2
11

A plot of these two equations will reveal the common points at

one or two intersections. These are then the factors of one

quadratic, the other two following directly. The equations are

analyzed below:

C (d2) - C12 /C d2
2

4= 1C C1  C1  C C C2 >C0
1' 13' 1 ' 15

CIS/Cll d 2 2

d 2  1 , d 2/C 11

dl ,d 2  C1 5s

Cl1

d i < 0,d 2  I /C

Looking at the second,

C 1 2 C 2 - 13 +d +C

dl 2C-+ 2C11 Cii 2 1 d2]

Dd 1 1 C 2 C 3i s -
D- - [ (-- + dL ) 1 -- d

Dd2I1 C11 +d2 CI1 C ]

Maximizing:

= 1 5 , d2  = ± -

C11  
C11
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APPENDIX II

DATA

The data portion of the program wa,; conducted in two parts.
The first consisted of free flight data obtained from the Von
Karman Gas Dynamics Facility. Static and dynamic data was
obtained at the Eglin Air Force Base low speed facility at
Mach 0.19 for Rn = 5xl0 5 . The free flight data is contained
in the report "Volute Stabilization" project VA0086.

Since the volute is a coiled flexible spring, it was
necessary to approximate the rigid model of a volute with a
solid body grooved in a staircase fashion to represent the
volute coils. Five aluminum and one epoxy models were construc-
ted. Three cylinder forebodies were made to mate these volutes.
The test bodies with complete geometrical and physical proper-
ties are shown in Figures II-1 through 11-3. These models
formed the core of the rigid body data bank. Several attempts
were made to construct flexible models from these by inserting
a leaf spring between the forebody and the volute, giving a
two-degree angular freedom model. Unfortunately, the models
generally failed structurally because the aluminum volute was
too heavy. Some flexible data was obtained at Eglin Air Force

Base for each flexible model. The coiled spring tails on
models (1-2) are shown in Figure 11-4.

Static data for the rigid models is plotted in Figures
11-5 to II-10. Flexible data for flexible models is shown in
Figures II-11 and 11-12.

Two specialized pieces of equipment, an accelerometer
stand and a dynamic shaker stand, were developed for the test
program at Eglin to obtain dynamic derivatives. Neither of
these items were fully tested during the program because of
time constraints and may be used extensively during the second
year's work. The operation of each is described below:

Accelerometer Stand

The accelerometer stand was developed for mounting in
the Eglin low speed tunnel. Inside the strut are assor-
ted electronics for transferring a voltage signal from an
accelerometer model to a special discriminator. The out-
put from the discriminator drives an oscillograph, giving
a trace of the acceleration of the volute versus time.
Diagrams of the strut and electric package are provided

in Figures 11-13 and 11-14, respectively. With the various filter modi-
fications, the strut may be used in flexible test work
during the second year's work.
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Dynamic Stand

The dynamic stand enables extraction of the basic aero-
dynamic derivatives of a given model by forcing it into
resonance. Data is obtained with a high speed camera and
reduced according to a scheme outlined in Reference 4
The stand is illustrated is Figures 11-15 and 11-16.

A sample of the free flight data obtained from the Von
Karman Gas Dynamic Facility is included as Figures 11-17 through
11-20. Reduced data for the aerodynamic coefficients has been
extracted from "Volute Stabilization" report and included for
completeness and comparison with the planar oscilatory data
obtained at Eglin Air Force Base.

Models are formed by combining the cylinders with the
volute tails. Their designation is provided by identifying
each model by the cylinder forebody number and the volute tail
number, such as 3+2, which is a model having cylinder 3 as its
forebody and volute 2 as the tail. Some flexible tests were
conducted by inserting a leaf spring between the cylinder and
volute. These models are identified as above except that they
are primed thus: (3+2)'. The physical properties used to ob-
tain the basic inertia terms are shown in Table II-1.

TABLE II-1. VOLUTE MODEL MEASUREMENTS

Model rv Rv Kv I

3 + 1 0.05533 0.1516 0.00003636 0.0002044

3 + 2 0.10033 0.1516 0.00011210 0.0003428

3 + 3 0.14408 0.1516 0.00027150 0.0006050

3 + 5 0.21592 0.1516 0.00073500 0.0015090

3 + 6 0.38850 0.1516 0.00422200 0.0057600

The reduced data from the Von Karman test program can be
used for design purposes as well as providing an extensive data
bank. Various aerodynamic coefficients were reduced from the
raw data for a number of models, distinct from the ones used at
Eglin. Table 11-3 lists the data from the Von Karman Gas
Dynamic Facility. To assist in correlating that data with pre-
vious model configurations, Table 11-2 is provided.
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VOLUTE 1

0.72!1 W leight (Pounds) Iv (Slugs-Ft )

0010.0744 0. 00O0 016 9

1.118

1.361 Weight (Pounds) Iv, (Sjugs-Ft )

0.124 0.114 0.00005823

1.825

- 1.814 Weight (Pounds)

0.1920.171

Iv (Slugs-Ft )

2.620 0.0001555

Figure II-i. Rigid Volutes :1, 2, and 3
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F
0.036

3.448

Weight (Pounds)
0.269 2

0.192 Iv (Slugs-Ft~

3.890

0.00318

7.00018

!irUre TI-2. RZigi d Volutes :4, 5, and 6
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f CYLINDER 1

00

1.108 1.080

2.188

CYLINDER 2

("1

1034

1.411 1.340

2.751

CYLINDER 3

Weight (Pounds)
0.434

IB (Slugs-Ft2i)
0.00009558

1.620 1 1.820

3.440
,ote: Model Pitch center locations are the same as the cylinders.

Figure 11-3. Cylinder Models
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2.300
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4.600

2.300 _-Mounting 1.100
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Release
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4.100
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Figure 11-13. Accelerometer Stand
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TABLE 11-2. CYLINDER MODEL CIIARA.TIRISJIICS

Cylinder Length Weight Moment of Inertia Xcg
(Inches) (Pounds) (Slugs-Ft2) (Inches)

0.75 0.059 2.2 x 10 " ' 0.",
1.00 0.079 3.4 x 10-"  0.55
1.25 0.088 4.3 x 10 "  ... 0.72
2.08 0.38.0 1.36 x 10 "-  1.25
2.78 0.S00 2.05 x 0-r " 1.65
3.48 0.610 2.95 x 10- 1.96

Table 11-2 lists only the cylinder forebody without the volute tail.
Only two different typu tails were used for the Von Karman tests. These
two types are shown in Figure 11-21. The smaller of the two was used on
cylinder l.,gths 0.75, 1.00, and 1.25 inches. The larger volute was used
on the remaining larger cylinders. Both volutes were constructed of epoxy
or silicon rubber corresponding to rigid and flexible volutes. In both
cases, the volute tail was hollow to give a more realistic value for IV .
This is especially important in order to have meaningful free flight data.

During the tests with the above mentioned volutes, it was decided to
use a number of coiled spring tails since these were available in one size
(Figure II-4,Flexible Volute 2). These small spring tail volutes stabilized
the smaller cylinder forebodies as previously mentioned. Data listed in
Table 11-3 pertains to this particular tail for configurations 075-1, 100-1,
and 125-1.

0 j.1

11.19
0.34 19

3.80

Figure 11-21. Volute Tails Used In Von Karmnan Test Progra;:
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